コンテンツにスキップ

Page:Shinshiki Sanjutsu Kogi 00.djvu/193

提供:Wikisource
このページは校正済みです
177
(一)
最小公倍數及最大公約數

卽ち 倍なり.是故に次の定理を得.

一, の倍數なる爲には の分子は の分子の倍數なること及び の分母は の分母の約數なるを必要とし又之を以て足れりとす. の約數なる爲には の分子は の分子の約數なること及び の分母は の分母の倍數なることを必要とし又之を以て足れりとす.

此定理を利用して直に次の結果に到達すべし.

二, の公倍數の分子は此等諸分數の分子の公倍數にして,其分母は諸分數の分母の公約數なり,故に, の最小公倍數 の分子は の分子の最小公倍數にして, の分母は の分母の最大公約數なり. の公約數の分子は此等諸分數の分子の公約數にして,其分母は諸分數の分母の公倍數なり,故に の最大公約數 の分子は の分子の最大公約數にして, の分母は の分母の最小公倍數なり.